

BSS transformation

Approach for predictable BSS transformation and business
simplification

October 2023

 Page 2 of 27

This document presents a structured, proven approach for full or partial core system replacement
through greenfield transformation.
The described approach is focused on leveraging vendor capabilities to achieve competent execution
and risk management, as well as simplifying business through the use of standard systems. In this
way, the typically much-needed product and process simplifications become part of the core system
replacement process. So, while the mechanics of the approach are focused on implementing systems,
they include a business transformation in part as a prerequisite and in part as a product of the pro-
cess.
The approach focuses on cost predictability, both in the project execution and in the subsequent
operation and emphasizes the need for change management.

1 Introduction
Increasing cost and complexity of any non-trivial
IT landscape appears to be a natural force that uni-
versally drives all companies towards a situation
where “legacy” systems are both a cost driver and a
constant barrier to business agility. Or, if not quite
a natural force, then inherent in the way IT systems
are often managed and evolving over time.
Replacement of such “legacy” systems in a predict-
able way, leveraging standard systems, is the topic
of this document. Such replacement is here termed
“transformation project”.

It is a key assumption that the desired outcome is
to (i) reduce inhouse system development to areas
where it has potential to provide differentiation
and value creation, and (ii) to leverage standard
systems where possible, preferably with large func-
tional scope. On the topic of the rational of stand-
ard systems, see further in section 6.8.
The document is primarily based on hands-on ex-
perience from core system (BSS/OSS) replacement
projects in the telecommunications industry and
the examples are taken from there. However, the
discussion of approaches is also applicable in other
industries that are highly IT dependent, and where
a sufficiently mature vendor landscape exists. The
approach for greenfield replacement requires
firstly (i) that there exists a number of vendors that
can support the core business with a standard sys-
tem, leading to an advantageous competitive situa-
tion from the perspective of the buyer. And sec-
ondly (ii) that simplification of products, pro-
cesses, organisation and other elements of

1 This can be challenging in businesses with very long-running
contracts. For such scenarios, a variation of the approach for
simplification must be found.

everyday business logic is possible, permitting cor-
responding IT simplification.1
A central challenge in transformation projects lies
in the complexity of legacy products and processes.
Simply doing a “lift and shift” of all existing com-
plexity will normally cause the new system to in-
herit the complexity of the old systems, thus reduc-
ing the potential upside significantly.
For this reason, simplification is an inescapable
prerequisite for gaining full effect of system re-
newal. However, the system renewal can also be
used as a lever to execute on this simplification.
The approach set out in this document takes this
focus on the relationship between simplification
and system replacement.

The document is structured as follows.
Section 2 discusses the need for senior manage-
ment commitment. This “top-level change man-
agement” is the foundation for projects of the char-
acter discussed here.
Section 3 outlines the alternative approaches for
BSS replacement. The rest of the document is fo-
cused materially on the greenfield approach.
Section 4 discusses BSS architecture options and
their relation to the implementation process.
Section 5 discusses target operating model and its
implication on the implementation project.

Section 6 describes the first, preparatory phase of
the greenfield approach where the requirements
and contracts are delivered.

Section 7 describes the second phase of the green-
field approach, the implementation.

 Page 3 of 27

Section 8 is a wrap-up of the greenfield approach.

2 Managing change
There are two main elements of change manage-
ment pertinent to projects such as those contem-
plated here. One is the normal, operational change
management of any project implementing new IT
systems: preparing people for new processes, tools,
and roles through training, including the related
understanding of shifts in responsibilities and in-
terfaces. This is discussed further in section 7.3.

While the normal change management is crucial,
the commitment from senior management is a pre-
requisite for successful project execution. This sec-
tion discusses this required management commit-
ment to the complex changes major system re-
placements entail. This discussion starts with out-
lining some of the key problems that the execution
of a transformation project will often face, leading
to the concluding views on the role of the senior
management.

2.1 Priority
In most organisations, the staff is fully occupied
with the daily operation and the on-going incre-
mental improvements that serve current and new
customers and delivery of the immediate financial
targets. Even if transformation projects are driven
by external staffing, they invariably require signifi-
cant internal participation. Both in the project
themselves, but also in managing and delivering
dependencies.
Priority is required for the sum of activities of
transformation projects, but it is also required that
the key staff involved have the seniority, compe-
tence, and tenure that enables them to define the
future company. This type of core staff is invariably
important to running daily business and therefore
typically have management roles that they may be
reluctant to exchange for a project role.

The approach outlined here, as well as other simi-
lar, attempts to provide predictability of the neces-
sary effort, dependencies, and risks. Recognizing
that such predictability is very difficult to achieve
with the current state of the industry, most experi-
ence practitioners recommend a significant buffer
or contingency in time and cost.
Even when formally having set aside such contin-
gencies, activating it often leads to priority chal-
lenges, e.g., staff will not be released, other projects
will need to yield to implement dependencies that
were not originally identified. This requires the
recognition that such challenges are inevitable and
the willingness to deal with them.

2.2 Stability of requirements
The headline here sounds really waterfall-ish and
in a sense it is. However, even when employing
more modern methods, all greenfield transfor-
mation projects have a large-sized initial delivery.
In spite of talking about “minimum viable prod-
uct”, a core system needs a lot of functionality be-
fore it can be released to serve its purpose inter-
nally as well as towards customers. In a brownfield
approach, this can in some scenarios be done in
smaller chunks, but it will be a balance between the
“chunk size” and the number of interim interfaces
one wishes to build.
One beacon that is often held out to how “agile” we
ought to be is Spotify. There is a very entertaining
cartoon-ish version of this (at the time of writing it
can be found by searching for “spotify engineering
culture”). As part of the story, they talk about what
led to the culture and that includes that they went
from a monolithic structure to the current model
(where they basically structured the organisation
and the core system in alignment). The story does
not go into details on this move, but as they were
already serving customers with a specific product,
that must have set a certain minimum bar for the
product they launched in the new structure. Hence
the need for a certain complexity of the initial re-
lease. The point being that getting into the “model
agile way of working” typically requires a large-
sized initial delivery that is less well suited for a
pure agile development method.
As this document is focused on implementing
standard systems, not developing software, the in-
itial release in a transformation project will have a
significant size, and while it can be tested in smaller
sizes, it does not meet reality until release time. It
can also be released gradually to customers; how-
ever, such gradual release is normally not tolerable
to last for too long time and has its own complexity.
In summary, implementing administrative stand-
ard systems in existing businesses like telecommu-
nication requires a large initial delivery that takes
a significant amount of time, normally at least two
years from start of procurement to initial release.

The world is not frozen for this time, and a trans-
formation project needs to adapt to necessary
changes. However, if those changes become exces-
sive it threatens not only the timeline but the entire
success of the transformation project.
One key mechanism contributing to this phenome-
non is the following. In well-conducted transfor-
mation projects, decisions are recorded to form the
basis for subsequent phases. The sum of decisions
over time becomes a collective understanding in
the transformation project, which is a sort of be-
nign inertia that keeps the project on its course.

 Page 4 of 27

What is not normally documented is the set of dis-
cussions and rationales that led to each decision. In
practice, most non-trivial issues are resolved in in-
formal cooperation, e.g., through collaboration
tools in combination with problem-solving meet-
ings (of which minutes are rarely taken beyond
what was actually decided). Documenting the trail
of logic in a manner that makes it possible later to
retrieve it effectively and reliably is in practice im-
possible.

The consequence is that understanding the impli-
cation of a proposed change requires revisiting de-
cisions and attempting to collectively recollect the
rationale that led to the decision and redo that in
context of the proposed change. This upsets the
“benign inertia” of the transformation project, and
in case of many such upsetting events, the transfor-
mation project loses its collective sense of direc-
tion.
Managing this is further complicated by the fact
that there is no KPI or other hard facts indicating
how close to the tolerance limit a transformation
project is getting, making it hard to withstand a
change that is deemed necessary to accommodate
for short-term business reasons.
Recognizing again that changes are necessary to ac-
commodate, any suggested changes should be fil-
tered thoroughly in a formal process to ensure that
a balance between the requirements of the on-go-
ing business and the progress of the transfor-
mation project may be found.

2.3 Overlap with line organisation
The type of transformation projects discussed here,
if they are to have any chance of being successful,
will “take over” substantial proportions of manage-
ment as illustrated in Figure 1: project overlap
with line organisation below with generic organi-
sational units (IT, products, markets, finance):

Figure 1: project overlap with line organisation

2 Note that “CEO” here is intended to refer to the head of the
business unit undertaking the transformation.

The project will define a significant proportion of
the future business: IT, processes, products with
impact on revenue, organisation. This means that
the scope of the line management will be reduced
for the duration of the project, potentially signifi-
cantly.
It is important to recognize that this is the nature
of the transformation project, not just an avoidable
turf war, and that line management decision man-
date must be exercised through different means
than the direct command for areas that are “taken
over”.

2.4 Management commitment
In summary, in order to be successful, transfor-
mation projects will take staff from line organisa-
tion, in part take over decision mandates and in ad-
dition limit the amount of change that line organi-
sation can implement for the duration of the pro-
ject.
Furthermore, the transformation project tends to
be less than fully predictable, causing the limita-
tions on the line organisation to extend in ways that
were not originally envisioned.
All in all, a transformation project is a major pain
and disruption to the way normal business is con-
ducted, making the ability to meet the short-term
financial targets (for which there is not normally
very much amnesty) even harder. All of these fac-
tors will breed resistance, often growing over time.

Executing a transformation project, therefore, re-
quires that the senior management team uniformly
and unequivocally supports it. This support will
only come if top management collectively recog-
nizes the imperative for the change.
The organisation needs to understand that the ex-
ecution of the project is mandatory, and the senior
management team must be motivated by imple-
menting the change and the corresponding trans-
formation. Furthermore, the management team (as
well as the board and other ownership stakehold-
ers) must be committed to execution, including
taking out products and corresponding revenue
that drives excessive complexity or precludes using
standard systems.

For these reasons, it is also typically best if a trans-
formation project refers directly to the CEO.2 In
case the transformation project reports to a
CIO/CTIO or transformation officer, such person

IT

FinanceMarkets

Products

Project

 Page 5 of 27

and role must be respected, business focused and
backed up fully by the CEO.
The CEO reference corresponds to the classical
PRINCE2 model with the CEO as chairman and the
respective management team members filling the
relevant roles. In the CIO reference, the roles are
less obvious, including who chairs the steering
group.

3 Categorization of approaches
This section outlines the different approaches to IT
transformation as a preamble to focusing on the
greenfield approach.
The IT landscape of a typical company consists of
many components, some which are tightly coupled
and others which are loosely coupled. The level to
which systems are coupled is individual for each
company. For example, in telecom companies, ERP
and HR systems are typically loosely coupled with
the BSS system, whereas CRM and order manage-
ment within the BSS system typically are tightly
coupled.

The discussion of approach here relates to replace-
ment of a group of tightly coupled systems. For ex-
ample, if the CRM, order management and billing
systems are implemented in one monolithic sys-
tem, they are very tightly coupled, and the discus-
sions on pros and cons below apply. Conversely, if
the ERP system is loosely coupled from the BSS, re-
placement of these two components can happen in-
dependently without too much friction and the dis-
cussion below therefore does not apply.
While a number of approaches are possible for re-
placing a group of tightly coupled systems, most
are variations of the following:
1. Brownfield, where parts of the tightly coupled

systems are replaced with a new system.
2. Carve-out, where parts of tightly coupled sys-

tems are moved gradually to new components.
3. Greenfield, where tightly coupled systems are

replaced with a new system built initially
alongside the legacy system stack.

Each approach is described briefly in the following
subsections.
The greenfield approach, which is the primary fo-
cus of this document, is described in a lot more de-
tail in section 6-7.

3.1 Brownfield approach
In the brownfield approach, parts of the legacy
landscape are replaced with a new system. Typi-
cally, this is a replacement of a CRM, online or

billing system, but can also be smaller components
like mediation, output management.
The approach is to essentially replace an existing
component with a new one, supporting the same
set of products and processes as previously.
For small components, this is fine, as these gener-
ally do not carry the full complexity of the product
portfolio and has comparatively simple and often
standardized interfaces.
Brownfield may also for larger components be a vi-
able approach in cases where the inherited com-
plexity can be managed from both a product and an
interface perspective. Since this would not nor-
mally be the case for non-trivial IT stacks, a thor-
ough review should be undertaken prior to em-
barking on brownfield replacement.
The interface perspective reflects the number and
complexity of interfaces affected; often hundreds of
interfaces need to be built or modified. Simplicity
of interfaces would normally require that the sys-
tem stack is structured in layers in a modularized
manner with well-defined and centralized API sep-
arating the various layers, essentially ensuring
loose coupling.

The product perspective includes limiting the
product support of the new system to only the new-
est generation(s) of products, leaving legacy prod-
ucts to be serviced “somewhere else”. For instance,
when replacing CRM, the billing system may have
rudimentary operational CRM capabilities that
may be used for legacy products while the new
CRM is used only for newer products.
The viability of the brownfield approach is highly
dependent upon the specific context of the com-
pany as well as the components subject to replace-
ment. The specific complexity should be well-un-
derstood prior to initiating the brown-field ap-
proach.

3.2 Carve-out approach
In the carve-out approach, functionality in the leg-
acy systems is replaced by moving it gradually to
new components. The approach resembles the
brownfield in the sense that replacement is partial,
and a lot of interfaces typically need to be built. In
the best applications of the approach, the new com-
ponents only support a subset of offerings, ensur-
ing a clean-up in the process. Transferring all leg-
acy complexity gives the same problems as the cor-
responding approach for brownfield replacement.
Replacement of components can secure reduced
impact through back-propagating transactional
updates to legacy components, causing new and
legacy components to contain the same data and

 Page 6 of 27

thus reducing impact on surrounding systems (and
thereby reducing the number of changes for each
carve-out iteration). Since upholding legacy com-
ponents defies the purpose of replacement, this is a
migration approach, not viable for longer term. For
spreading the impact of changes, both in risk and
cost, out in time, it can be an effective migration
strategy.
The approach can, dependent upon the specific ap-
plication landscape, have the advantage of provid-
ing partial results during the process. This is an im-
portant risk-reducing factor as the stamina re-
quired for complex system replacement can be
challenging to uphold. As a gradual approach, it
can also reduce the IT risk since components go
into production gradually.
The key challenge with the approach is to find a
good sequence to conduct the carve-out. If the
carve-out becomes too complex for each compo-
nent, it will have the challenges of brownfield. If the
number of components required to replace to make
integration manageable is very large, it will effec-
tive be akin to greenfield.
Since the components to be replaced often will not
adhere to the boundaries of standard systems, the
approach can require quite substantial amount of
custom development, not all of which is temporary.
This can significantly reduce the value of the re-
placement, since complexity is more likely to in-
crease gradually in a custom system.

As for the brownfield approach, the carve-out ap-
proach is highly dependent upon the specific con-
text.

3.3 Greenfield approach
The last option considered here is the greenfield
approach. In the greenfield approach, a new stack
is built alongside the old stack with suitable inte-
gration points allowing for dual operation. Follow-
ing the setup of the new stack, customers are mi-
grated into it.
The greenfield approach has the advantage of ena-
bling simplification and - if properly executed -
tends to be more predictable.
The greenfield approach is not discussed further
here as it is the topic of the remaining document.

3 This does not apply in case a number of systems are imple-
mented that are pre-integrated with a commitment to remain
so. Such a situation will lead to a more complex sourcing

4 BSS architecture
As noted above, a core belief underlying this docu-
ment is the use of standard systems. This has sev-
eral implications.

Firstly, as far as the standard systems are con-
cerned, software development and the internal
software architecture is of limited importance, pro-
vided that the vendors can be expected to follow
overall industry trends.
Secondly, the key architectural focus is on avoiding
complex integrations as these tend to be error
prone and costly to both implement and maintain.
Thirdly, since custom development can be limited
to comparatively few and limited areas, the com-
plexity of these can be limited.
Following a slight detour on monolithic architec-
ture, this section outlines some architectural pat-
terns that can help avoiding excessively complex
integrations.

4.1 In defence of the monolith
Some of the architecture illustrations below have
large functional clusters from a single vendor, re-
sembling a “monolithic” system architecture.
In most telecom architecture discussions, the term
“monolith” is used derogatively, and almost synon-
ymously, for an application with poor modulariza-
tion where all changes are highly complex.

Understood as such, obviously the monolith is not
a good thing. However, understood as a pre-inte-
grated system covering most functional require-
ments, based on individual subproducts with dis-
tinct functionality, it enables the business while
avoiding the need to become a software company.
Implementing standard systems with small foot-
print typically requires quite extensive integration
since (i) it tends to become more like a brownfield
approach and (ii) the small footprint generally im-
plies that multiple standard systems are imple-
mented at the same time. Thus, implementing
standard systems without extensive integration ef-
fort in practice requires quite extensive footprint.3

Procuring an extensive core system from a single
vendor makes the on-going operations a lot sim-
pler. The number of releases to be co-ordinated are
smaller, there is limited retesting and rebuilding of
interfaces, and the responsibilities are clearly de-
fined.

situation, but the implementation is akin to having one system
with a large footprint.

 Page 7 of 27

Obviously, such extensive footprint results in ex-
tensive vendor lock-in. However, the vendor lock-
in also exists where multiple vendors have smaller
footprint, and the vendor lock-in can be managed.
See section 6.7 for further discussion on the vendor
lock-in topic.

4.2 Patterns
This section outlines architecture patterns that
work well for systems with classical delineation for
telecom companies to provide BSS and OSS system
support without becoming a software company (in-
ternally or outsourced).

The purpose is to illustrate what the scope could be
when the sourcing process focuses on maximizing
vendor footprint. This is done by showing patterns
that provide for simple integration as well as pat-
terns that requires complex integration.
The purpose is emphatically not to provide an ex-
haustive list of BSS/OSS patterns nor to be norma-
tive on what architecture patterns overall are work-
able.

4.2.1 Maximized scope
In this pattern, almost all BSS/OSS functionality
can be found with the main vendor. It can be illus-
trated as follows:

Figure 2: Maximized functional scope

The dark blue is a full scope supplied by a single
vendor, the light blue customized and the green
outside of the BSS/OSS scope.

Obviously, it is possible that both partner APIs,
online and apps are supplied by the main BSS
vendor. Normally, the online parts of the BSS sys-
tems are not satisfactory from the customer
friendliness perspective, focusing more on the
transactions than the experience. But there may
be exceptions where this is not the case.
A 360 degree customer view is ensured by absence
of data storage in the online part.

Assuming that the vendor implementation is
standard, the pattern permits a very simple opera-
tions in that all material development is out-
sourced to the vendor of standard software.

Note that the pattern assumes that the core BSS
can handle all requirements for both B2C and
B2B.

4.2.2 Separate OSS
This scenario is the same as the first pattern set out
in section 4.2.1, except that the OSS (similar to pro-
duction in the ODA parlance) is separated.

Figure 3: Maximized BSS scope

The dark blue is a full scope supplied by a single
vendor, the light blue customized APIs and the
green outside of the BSS scope.
In this structure, the ODA production and classical
OSS are similar in scope (the OSS delineation is
more open than the ODA production).

4.2.3 B2B sales tooling separate
This scenario builds on the “separate OSS” pattern
in section 4.2.2, but whether the OSS is separate as
in section 4.2.2 or from the same vendor as the BSS
as in section 4.2.1 is not material for the discus-
sions in this section.

Online, Apps

Partner APIs

BSS/OSS

CRM, CPQ, order management, rating,
billing, revenue assurance, product

catalogue

Provisioning, resource management,
service orders

ERP, Ancilliary systems

Online, Apps

Partner APIs

BSS

CRM, CPQ, order management, rating,
billing, revenue assurance, product

catalogue

ERP, Ancilliary systems

OSS
Provisioning, resource management,

service orders

 Page 8 of 27

Figure 4: Separate B2B CRM

Here, the B2B sales process is supported by a dif-
ferent tool. This pattern is not unusual since the
B2B functionality in classical BSS stacks often is
deemed inadequate.

The pattern can work under a few critical assump-
tions:
1. The CPQ in the B2B CRM is held within what

can be handled in the billing and product cata-
logue of the main billing system.

2. The orders formed in the B2B CRM are submit-
ted to the main BSS once and then executed
and maintained in the BSS.

3. An engagement overview can be taken from the
BSS into the B2B CRM.

4. No further integration takes place between
B2B CRM and BSS.

With these assumptions, the B2B sales processes
can be handled in the B2B CRM and the customer
management in the main BSS. The specific com-
plexity depends on the specific systems, but in
most cases, these are quite simple.

4.2.4 B2B CRM as front-end
This is a variation of the above where the interface
between the B2B CRM and the BSS is a full integra-
tion. This violates the critical assumptions listed in
section 4.2.3.
This pattern is to be avoided for the following rea-
sons:
1. The integration between the CRM and the core

system is normally highly complex since the
number of states in, e.g., orders, products, pay-
ment states, are very high.

2. Both systems (BSS and B2B CRM) typically
view themselves as “data masters”, adding to
the complexity of the integration.

3. Such complex integration normally leads to
data inconsistencies that can impact customer
experience.

The only exception is in case the vendors of the B2B
CRM and the BSS have pre-integrated their sys-
tems. This ensures – or at least outsources the risk
of – data inconsistencies and ensures that the inte-
gration is upheld in the face of new releases.

Figure 5: B2B CRM as BSS front-end

4.2.5 Separate B2B and B2C stacks
This pattern is identical to the one set out in section
4.2.2 except that B2C and B2B are managed sepa-
rately.

Figure 6: Separate B2B and B2C stacks

From an architecture perspective, this works fine.
It can cause challenges for retail (where applicable)
since they would need to use two different systems
depending on the type of customer.
Also, some complexity may arise from the fact that
small companies as customers tend to move be-
tween B2B and B2C offerings.

Online, Apps

Partner APIs

BSS

CRM, order management,
rating, billing, revenue

assurance, product catalogue

ERP, Ancilliary systems

OSS
Provisioning, resource

management, service orders

B2B CRM

CRM, CPQ

“Submit and pray”
transfer of orders

Engagement
overview

Online, Apps

Partner APIs

BSS

CRM, order management,
rating, billing, revenue

assurance, product catalogue

ERP, Ancilliary systems

OSS
Provisioning, resource

management, service orders

B2B CRM

CRM, CPQ,
Customer

management
Full integration

to order
management,

customer
maintenance etc.

Partner APIs

Online, Apps

BSS

CRM, CPQ, order
management, rating,

billing, revenue
assurance, product

catalogue

ERP, Ancilliary systems

OSS
Provisioning, resource management, service orders

Online, Apps

BSS

CRM, CPQ, order
management, rating,

billing, revenue
assurance, product

catalogue

B2BB2C

 Page 9 of 27

Finally, unless special circumstances prevail, it is
likely to be a more expensive solution as most BSS
vendors support both B2B and B2C.
In this scenario, the two stacks will be subject to
separate sourcing processes.

4.2.6 Joint billing
This pattern is similar to the “separate B2B and
B2C stacks” of section 4.2.5, except that it has a
joint billing system across B2B and B2C.

Figure 7: Joint billing

The integrations here are less complex than the
ones set out in section 4.2.4 but still require a
translation between product catalogues that can ei-
ther be complex integrations or somewhat tedious
manual updates across systems. As above, if the
systems are pre-integrated by the vendors, this be-
comes a smaller, potentially even marginal, issue.

The pattern is not very obvious as most BSS ven-
dors include billing in their package and the inte-
gration still has some complexity.

Also, the sourcing process increases in complexity
as B2C and B2B both need to integrate with the
billing, implying three processes in parallel for a
full BSS replacement. Running them sequentially
(in case this was also the architecture pattern prior
to the transformation project) is possible but will
entail at least some of the challenges discussed in
section 3.1 on the brownfield approach.

4.2.7 Summary
As noted initially, this section outlines a few pat-
terns for illustration of what to aim for and what to
avoid. For all scenarios, avoiding data in the chan-
nels provides for consistent cross-channel view of
customers.

Scenarios with heavy integration do not lend them-
selves to scenarios where the target is to avoid in-
house development.

The patterns evolve from a “best of large suite” to
more gradual “best of suite” with the joint billing

model set out in section 4.2.6 moving towards the
“best of breed” scenario. The general view taken
here is that the complexity added from “best of
breed” is rarely justified by differentiating capabil-
ities.
The process defined in section 6 and 7 sets out to
select and implement such a pre-integrated system
as the backbone of the system landscape. This is
back to the basic assumptions of the document, i.e.,
that the target is to avoid in-house development ex-
cept where it really has a differentiation potential.

5 Operating model
Once the implementation project is completed, the
system needs to be managed to support the busi-
ness. This includes the day-to-day operations as
well as the on-going enhancements.

To a large extent, the project roles set the direction
for the operating roles, e.g., through competence
building. In addition, the structure of sourcing the
solution is influenced by how the target operating
model is. Therefore, understanding the target roles
is important as part of setting up the project and
executing the initial sourcing process.
This section sets out a few considerations that are
necessary to include as part of the implementation
project in preparation of normal operation follow-
ing the transformation project. It does not aspire to
describe a full list of items to consider for IT oper-
ations.

5.1 General considerations
The following taxonomy for the technical operating
model is used.

 Function Description
AD Application

development
The activities required for
larger implementation efforts,
e.g., new VAS services.

AM Application
maintenance

Activities required for bug fix-
ing or minor, incremental de-
velopment efforts.

AO Application
Operations

Day to day execution of appli-
cations, e.g., billing runs, data
fixes, monitoring.

BO Basic Opera-
tions

Implementing and supporting
hardware, basic software, da-
tabase software and the like.

Figure 8: Operating model taxonomy

For standard software, all AM and AD for the ap-
plication itself is delivered by the software vendor
through the support and maintenance agreement.
These activities are natural monopolies in the sense
that as owner of the software, only the software
vendor is capable of providing these services. The

Partner APIs

Online, Apps

BSS

CRM, CPQ, order
management, product

catalogue

ERP, Ancilliary systems

OSS
Provisioning, resource management, service orders

Online, Apps

BSS

CRM, CPQ, order
management, product

catalogue

B2BB2C

Billing
Rating, billing, revenue assurance, product catalogue

 Page 10 of 27

support and maintenance service, fortunately, can
be contained in cost through the contract.4
On the other hand, the operations of the applica-
tion as well as the ongoing configuration and en-
hancement outside the core software are not natu-
ral monopolies. These areas cannot readily be con-
tained commercially as their scope is less clear.
While it is possible to outsource these services di-
rectly following the implementation project, the re-
sult will be that limited hands-on competence ex-
ists internally and, in consequence, changing the
sourcing setup can be challenging. Upholding com-
mercial leverage in such a situation is not realistic
and may even spill over to areas that initially are
contained well.

Further considerations on the “best” model can be
found in section 6.4.

5.2 Cloud
As more applications are “moving into the cloud”,
it becomes an important discussion when setting
up the operating model. This is discussed further
below.

5.2.1 SaaS and IaaS
In discussion “cloud”, it is important to distinguish
between the different models, in particular the
“software as a service” (SaaS) vs. the “infrastruc-
ture / platform as a service” (IaaS).
For SaaS, the operation is inseparable from the ap-
plication and other operating models are not pos-
sible. For such systems, the typical license model
can be made predictable as it often is linked to user
counts, revenue under management or similar.
This can, therefore, be managed through the sourc-
ing process.5
IaaS is materially an outsourced basic operation
(BO) with substantial flexibility in available capac-
ity. For IaaS it is typically challenging to get pre-
dictability. This is not quite unreasonable, as the
load on the platform depends on the use by the cus-
tomer. Since many software vendors themselves
outsource IaaS to the major, global suppliers (Mi-
crosoft, Google, Amazon), the customer typically
“inherits” these terms. The commercial leverage in
this situation is typically non-existent in a direct
negotiation and must therefore be secured in a

4 Having the software vendor do support and maintenance at a
fixed price is the general situation and target; however, exces-
sive customization may complicate this.
5 With some of the larger SaaS vendors, it is very difficult to
achieve predictability in pricing as they reserve the right to ad-
just pricing unilaterally. This is addressed in principle in the
process, but obviously the process cannot in itself make a ven-
dor adhere to certain terms. However, it is important to

different way, i.e., through the ability to switch
sourcing model.

5.2.2 The imperative of the Cloud?
When reading the literature of vendors, TM Forum
and others, it often appears as if moving to the
cloud itself is a prerequisite for tapping into new
revenue streams (although the actual revenue
streams typically are quite vaguely described).
Even better if one is “cloud-native”, which appar-
ently is a combination of microservices, access to
flexible capacity and CI/CD.
When reading statements, e.g., top-50 in a google
search, it appears that the industry has accepted
these as almost axiomatic truths that do not need
justification.

The view view taken here is that when considering
the options, one should look to identify the real ad-
vantages and rather than abstractions, look for
real-world customer problems that may be solved
and for which solutions customers are actually will-
ing to pay.

A few specific comments on cloud pertaining to the
operating model are listed below.

SaaS
A SaaS application has the advantage of being sim-
ple to onboard and its universal upgrade model
promotes some discipline in how it is used. Addi-
tionally, it can simplify operations as it represents
outsourcing of a significant operational footprint
(not unlike the “monolith” of large functional
scope). Such simplification requires that the over-
all architecture remains simple without too many
integrations.
Some SaaS solutions put tighter limits on what cus-
tomizations can be done, thus promoting disci-
pline. However, this characteristic is not universal
and not really linked to the SaaS model (some sys-
tems with more classical licensing model has the
same characteristic). For others, the customization
can still be quite massive.

For smaller businesses the SaaS model has the ad-
vantage of a quick start without up-front cost and
flexible scaling. These advantages are more dubi-
ous for stable businesses and for such it is the

maintain that there is nothing in the technology that precludes
commercial predictability, even if SaaS vendors try to convince
customers of this. As an aside, anecdotal evidence indicates that
being careful in understanding the charge model for the large
SaaS companies is important as quite a few companies have
been surprised by the resulting cost levels from seemingly inno-
cent charge models.

 Page 11 of 27

continued upgrades (which can be an advantage
but may also turn out to be a disadvantage in case
functionality disappears) and cost. The latter can
be ascertained in the procurement process, even if
some of the SaaS charging models can be very chal-
lenging to understand.
Typically, using SaaS also moves costs from CAPEX
to OPEX.

IaaS

Moving to the cloud in the sense that it is a hired
infrastructure provides similar advantages as SaaS:
it scales well and starting is easy.

Since it is a rented infrastructure, it also shifts costs
from CAPEX to OPEX, typically a disadvantage for
telecommunication operators.
Again, this may make sense depending upon the
specific situation, but there is also a movement
away from this trend. Just try searching for “why
we are leaving the cloud” – at least some will say
that they no longer need the scalability, the cloud
comes with high cost and the cloud has its own
complexity.

Cloud native
There are various definitions, but most include mi-
croservices as their central theme. And state vari-
ous benefits like increased efficiency, reduced
costs, and availability, again typically without qual-
ification.

As this is not a discussion on software architecture
in general, the pertinent question is whether it is
important that the BSS vendor uses microservices,
Kubernetes and is cloud native. Unless you have
specific requirements that can translate into BSS
requirements it comes down to cost, including the
cost of the operational complexity.

6 Greenfield phase 1: Contracting
This section defines a methodology for the first
phase of the greenfield approach, which seeks to
shape the project and handles the process up to the
point where a contract is signed. The contract is the
main physical manifestation of the phase, but fol-
lowing the process ensures that the contract ena-
bles a simplified, standard-based business support.

The desired characteristics of the approach in-
clude:
1. The process should be designed to ensure busi-

ness and system simplification.

2. The process should be designed to maximize
the use of standard systems.

3. The process should secure short- and long-
term cost efficiency and commercial leverage.

4. The process should not require a detailed spec-
ification in order to start the procurement pro-
cess.

This contracting approach section contains the fol-
lowing subsections that are part of or background
to the approach.

1. The importance of simplification and how the
contracting phase goes hand in hand with the
business simplification.

2. Discussion on why an RFP is considered a nec-
essary first step in a transformation project.

3. Discussion of the ‘specification trap’ and its im-
plications are outlined. Avoiding this is defin-
ing for the suggested approach, including in
particular the “principle of partial specifica-
tion”.

4. The target operating model and its role in se-
curing continued commercial leverage.

5. Specifics on the maintenance agreement.
6. Considerations for cross-border synergies.
7. Vendor lock-in.
8. Definition and importance of standard sys-

tems.
9. Definition of terminology for project roles.
10. Discussion on whether system integrators

should be invited early in the process.
11. Identification of potential vendors.
Following these introductory topics, the main
methodology for the contracting phase is outlined.

The in-project concept of “people-related change
management” is described in the second part of the
approach, in section 7.3; the framing of the project
including securing the organisational stamina for
execution, is discussed in section 2.

6.1 Simplification
Simplicity cannot be emphasized sufficiently; em-
pirical evidence shows that length of operation and
simplicity of product are the only significant ex-
planatory factors impacting IT costs for mobile op-
erators. While not directly documented in bench-
marks, it appears obvious that complexity in IT and
complexity in business is a vicious circle. Complex
business requirements drive complex IT systems;
which drive long development times; which cause
short term solutions that tend to live very long;
which causes process faults and manual worka-
rounds; which impacts customers and calls for
‘short-term’ solutions. Along the way, the IT staff
keeps talking about “technical debt”, which is not
addressed until it becomes so massive that a trans-
formation project is initiated.

 Page 12 of 27

The agenda of simplicity should therefore focus on
making things simple and keeping them simple
(the latter is not part of the discussion here).

6.1.1 Start from scratch
To make sure that all current customers are served
with relevant products, one need to look at the cur-
rent products. However, if one starts with current
products and processes, one risks getting stuck in
current functionality and complexity (obviously
depending upon the starting point).
So, to achieve simplicity, the input should be the
main segments, products in the market serving
those and from there derive the products to offer in
the future. In other words, a process like one would
do in a new company.

Once this has been developed over a few iterations,
the current product portfolio can be used to check
if there are important features or whole products
that have been left out.

6.1.2 It is a two-way street
Laying the foundation for business transformation
and simplicity is a separate piece of work as one
needs to design a new business.

However, a key to simplicity is to use standard sys-
tems. Such systems come with version 20+ of data
models and process support with input from many
implementations. There is no way a similar quality
can be achieved in a design made from scratch. The
required experience cannot realistically be brought
to bear in a specific project. For a standard system,
the value deteriorates quickly if extensive customi-
zations are made: the ability to follow the upgrade
path, utilize new features and avoid own develop-
ment will be lost.
It is therefore essential to adapt to the capabilities
to standard systems, unless the value creation of
not doing so is clear and the consequences in terms
of cost (long term as well as short term) and oper-
ating model is understood and accepted.
Furthermore, the requirements specified in the in-
itial phase of business transformation should rec-
ognize this fact and try to keep a fairly high level of
abstraction as well as focusing on differentiating
requirements; for instance, the ability to rate an
SMS or produce a basic bill is not likely to be miss-
ing in any system today, whereas hierarchical split
billing handling the relevant tax quirks may not be
standard.
One reason that the approach outlined here advo-
cates starting from scratch is to facilitate this two-
way thinking: define the products with which to
serve the customers and use that, rather than exist-
ing functionality, as the starting point. And in

doing so, bear in mind that product is a lot more
than raw telecom functionality and price. Product
is also how the customer experience the processes
(and, implicitly, data), e.g., through flexibility and
usability of self service.
In the approach outlined in sections 6-7 of this doc-
ument, the two-way street view is very explicit.

6.2 Why the RFP?
The classical RFP purpose is a pure procurement
thinking: Getting the best product at the best price.
That still makes sense, as the RFP provides a struc-
tured way of asking the market on fulfilment and
pricing.
In addition, the RFP as outlined here, provides a
way of adjusting the requirements to the specific
application, to the effect that it supports the busi-
ness in the best possible way. It furthermore tees
off the subsequent phase in designing the process
and ensuring aligned expectations.
Finally, the RFP ensures a fixed price. Pricing is a
prerequisite for comparing alternatives and exe-
cuted properly, fixed price gives predictability. Fur-
ther, time and material contracts are described as
something to avoid. This is the view taken here for
all vendors involved, with the system integrator
(see below for the various roles) as a potential ex-
ception. The reasons are briefly outlined here.
Fixed-price contracts do not necessarily give cost
savings relative to time and material contracts. But
they can enable cost predictability.
More importantly, time and material projects lack
the tension of keeping scope, keeping to standard
and focusing on finishing in time, factors which in
fixed-price contracts are driven strongly by ven-
dors.

Also, the fixed price contract ensures that vendors
activate their internal risk management apparatus.
This is an important assurance when embarking on
such a project. In time and material, the risk is nor-
mally entirely with the customer, and the vendors
will be less concerned with risk management – if
the project runs longer, the vendor will gain more
revenue.
In other words, fixed price promotes discipline in
that the vendor will issue formal requests in case of
new requirements. These will, therefore, be scruti-
nized carefully. Also, the vendor will not suggest
extensions or “nice to haves”, as these are unlikely
to be approved and therefore will need to be deliv-
ered for free. This “benign pressure” that forces
discipline on both sides is not possible without a
fixed price and a strict change process.

 Page 13 of 27

6.3 The specification trap
This section outlines the concept of the “specifica-
tion trap”, which is the dilemma of how to contract
a delivery that is not fully specified yet getting a
predictable pricing. This dilemma and its (partial)
resolution is defining for the method outlined in
section 6.12.

6.3.1 Partnering
Before diving into the “specification trap”, a note
on the relationship between a vendor and a cus-
tomer: not infrequently, the notion of “partnering
with the vendor” comes up as an alternative to run-
ning a sourcing process, in full or in part. Vendors
often promote this notion.

The perspective taken here is that the interests of a
vendor and a customer are fundamentally opposed.
The relationship can be fine, constructive, even
friendly and beneficial for both. But coming down
to essentials, the customer has an interest in get-
ting as many services for as small a cost as possible.
And the vendor has the opposite interest.
This is not to say that partnerships do not exist.
One real-life example experience was an Asian mo-
bile operator who agreed with a RAN vendor to pay
a percentage of revenue for implementation and
operation of the RAN. In this way, the vendor’s in-
come is linked to the results of the customer and
the opposing interests are less pronounced. But
such deals are not commonplace and almost un-
heard of in the IT system space. 6
The implication of this point is that one must se-
cure oneself commercially or the vendor probably
will take advantage of the situation. Not all vendors
will do so at all times, but people and ownership
changes, financial pressure fluctuates, and relying
on partnerships can be fragile in such situations.

6.3.2 Waterfall
Now for the “specification trap”. In a traditional
waterfall approach to system procurement, the
RFQ/RFP processes would attempt to specify all
requirements in detail, sometimes in fairly extreme
detail. This approach is not employed frequently
anymore but serves as illustration of the ‘specifica-
tion trap’. The principle for specifying require-
ments in this way is illustrated below:

6 One example taken from the airline industry can serve to illus-
trate the difference. The example is from when “free” meals and
drink were still a standard part of most flights. An airline cater-
ing company supplying to both traditional airlines, that in-
cluded free drink and meals in their fares, and low-cost airlines
where everything was payable. Their relationship with the tra-
ditional airlines was generally fine but burdened by the fact that

Figure 9: Traditional waterfall point of specification

The “point of specification” refers to the point in
the process where the specification of the require-
ments are fixed. The process above is intuitively
fine: the customer asks the vendors for a specific
solution, vendors respond, and the best fit is cho-
sen.
There are two important problems with this. The
smaller problem is that it does not facilitate use of
standard systems. The vendor signs up to specifi-
cations irrespectively of whether it is standard or
not.
The larger problem is that it is not in practice pos-
sible. The amount of detail that needs to be written
down is prohibitive. It is never right in the first
place, and it is quickly outdated, sometimes even at
the time of submission.

In addition, it is wasteful since one must specify re-
quirements so standard that they are trivially ful-
filled by any competent vendor.

6.3.3 Analyze - build
An alternative model is to engage with a vendor,
typically a system integrator, and run the process
as follows:

Figure 10: Point of specification after contracting

Here, the vendor is selected before the point of
specification and assists in the analysis that leads
to an agreement for the implementation. From a
content perspective the model is fine, but it causes
the customer to lose commercial leverage almost
immediately. Essentially, it becomes a time and

discussions always focused on reducing cost (and thereby at
some point the quality of the offerings). Whereas with the low-
cost airlines, the focus was on how to sell as much catering as
possible, as both the catering company and the airline benefited
from such sales. The former relationship was fine but the latter
had more characteristics of a partnership.

What
How

Terms
Tender

Response
and

evaluation

Contract
signature

Point of specification

“What”
Terms

Tender and
selection

Agreement
for analysis

Analyze
Agreement for
implementation

phase.

Point of specification

 Page 14 of 27

material agreement, at least as far as the system in-
tegrator goes.

6.3.4 Agile to the rescue?
Some vendors would argue that the answer to the
dilemma lies in an ‘agile’ approach. While there are
many advantages to an ‘agile’ approach, from a
commercial perspective it still boils down to pay-
ment based on time and material. The ‘point of
specification’ is therefore merely dragged out, but
still after contracting. In a picture similar to the
ones above, it looks as follows:

Figure 11: Point of specification in agile

Essentially, the specification is not really final until
the project is done.
Agile certainly has a role in transformation pro-
jects. Most vendors will use agile methods in their
implementation, and that makes a lot of sense. But
contracts are in their essence not agile.

6.3.5 Addressing the specification trap
The process set out in this document, in particular
section 6.12, attempts to address the ‘specification
trap’. The approach is illustrated below:

Figure 12: Multiple points of specification

The approach is to define the specification through
the process in co-operation with the vendor before
and after contract signature. The detailing that
happens after contract signature needs to be sub-
ject to a set of rules set out in the contract. The key
vehicle to this detailing is the principle of partial
specification illustrated below.

Figure 13: The principle of partial specification

This central principle is where the prerequisite of a
competent vendor landscape for the business is
used.

The principle is, reading from the left:
1. There is a full, but unknown scope. Unknown

in the sense that it cannot be described, not
that it is non-existent.

2. The vendor has a system that supports similar
businesses with materially the same scope.

3. In order to run the process, a specification is
written. The specification is, as the dots illus-
trate, only a small proportion of the full scope.
In the illustration it is shown as random dots,
but of course the text should focus on key pro-
cesses and differentiating capabilities.

4. The resulting solution materially fulfils the full
scope – exceptions as illustrated with the white
dots must be handled either through worka-
rounds or other systems. Or by simply just
abandoning the requirement.

This can be contracted in the sense that the risk of
completeness, at least in part, can be sourced to the
vendor. While they may initially object, some of
them forcefully, such agreement can be reached.

6.4 Target operating model
One aspiration for the approach outlined is to up-
hold commercial leverage with the customer.
Clearly, it will be stronger before contract signa-
ture, but it is possible to keep it throughout the re-
lationship.
The key to securing this is in the operating model
following implementation. The primary software
vendor will in practice have monopoly for the soft-
ware. This is due to extreme shifting costs, as shift-
ing to another software vendor entails yet another
program like what is outlined here. Therefore, the
future relationship with the software vendor
should be characterized as follows.
1. The “monopoly” part, i.e., the continued

maintenance of the core application, should be
subject to fixed, predictable prices that are
valid for perpetuity.

2. All other parts should be managed within the
customer organisation, or subject to tender.
This requires that the competences are not mo-
nopolized.

For these reasons, the product vendor should ide-
ally, following acceptance of the primary delivery,
be confined to delivering support and maintenance
services. The other services required to operate and
develop the solution should be in-house or sourced

What
How

Terms
Tender

Response
and

evaluation

Contract
signature

Point of specification

What
How

Terms
Tender

Response
and

evaluation
Contract
signature

Point of specification

Detailing

Full scope Vendor system Specification Resulting Solution+ =

 Page 15 of 27

to other vendors. This requires that competences
are built with the customer throughout the project
and that sufficient IPR is vested with the customer
to permit maintenance of all relevant items. This
way, the ‘monopoly’ component from the primary
vendor is contained commercially and the other
services can be subject to continued tendering.

The approach above is only possible if the solution
remains a standard system as described in section
6.8 below.

The alternative, where the primary vendor contin-
ues to deliver development and maintenance ser-
vices, extends the monopoly to areas where the cost
cannot be pre-agreed. Such an approach makes the
long-term cost predictability challenging.

6.5 Maintenance agreements
In section 6.4 above, it was stated that the mainte-
nance agreement should have prices that are valid
for perpetuity. This section expands on this and a
few other key aspects of the support and mainte-
nance agreements.

Most software vendors will attempt to argue that
the termination notices should be “balanced”, by
which they imply equal timeline. However, equal
timeline is nowhere near balanced. For the cus-
tomer, the time from decision to replacement is a
minimum of four years, in many cases longer. And
the old system is likely to linger a bit longer for
“edge cases”. For the software vendor, it is a loss of
revenue with no operational impact.
In practice, permitting a termination notice from
the vendor of less than eight years after full go-live
reduces long term cost predictability significantly.
The eight years come are the sum of implementa-
tion and decision cycle. The implementation is typ-
ically at least four years. The decision cycle is the
time it takes to start an implementation program –
typically, the fact that a vendor raises prices will
not shift internal priorities to system replacement
quickly. Conversely, there is no reasonable busi-
ness reason to have termination period from the
customer longer than a year.
A second point on the support and maintenance
agreement is to be careful with upgrades. Firstly,
they should be included. Otherwise, the price con-
trol of the monopoly will, again, be eroded. Sec-
ondly, the assurance that all functionality is main-
tained in the upgrades, irrespective of the way the
system is packaged, should be included.
A final point is to secure a “light-weight” version of
the support and maintenance agreement following
the decommissioning of the software system. Typi-
cally, the benefits of this will be with someone else
than the people implementing the system, so it

tends to get less attention. But retention of records
can be a real pain without having a system to do it
with, more so with GDPR requirements. On the
other hand, one does not wish to pay full support
for a system with one or two users, to which access
is mostly theoretical.

6.6 Cross border synergies
Cross border synergies are discussed here as they,
if desired, should be designed into the contract.

The discussion of cross-border synergies has an ap-
pealing logic (“why do we want to maintain X sys-
tem stacks when we can make do with one”), which
assumes a context of commonality that is typically
not present. Furthermore, also similar to outsourc-
ing, it is not supported by empirical evidence: scale
in itself has limited value.
In most situations, the governance of products and
processes is decentralized and the requirements to
IT are therefore not co-ordinated. Not infrequently
there are real market differences, especially for
large telecom operator groups with operations in
very different geographies. Centralizing the IT peo-
ple servicing a number of different environments
does not give significant scale advantages.

Only in situations similar to where outsourcing
makes sense can cross-border synergies provide
significant advantages: with high degree of similar-
ity through use of standard systems or centraliza-
tion of governance of requirements, are there sig-
nificant advantages of having joint systems across
borders. For this reason, the back-end systems like
billing, mediation and rating are easier to obtain
cross-border synergies for than customer facing
systems like CRM and online.
In case the new system should support multiple
business units, the governance of requirements, re-
leases and relationship to other systems should be
in place early, preferably before embarking on the
contracting approach.
The question of cross-border synergies is the topic
of another white paper available on the web page
set out at the end of this document.

6.7 Vendor lock-in
The approach outlined here attempts to leverage
vendor competences in a number of ways, includ-
ing maximizing the scope of the product vendor. If
successful, the product vendor will have a large
footprint in the application architecture. This fact
sometimes leads to concerns over vendor lock-in.
This section discusses this concern and how it may
be dealt with.

 Page 16 of 27

Firstly, vendor lock-in is unavoidable (unless one
builds systems internally, in which case the “lock-
in” is transferred to critical employees which is
usually even worse). The lock-in does not become
much worse from a large footprint. Any vendor
with a substantial footprint is a challenge to re-
place, typically requiring 3-4 years from decision to
execution. Therefore, vendor lock-in must be man-
aged, as it cannot be avoided.
The approach suggested here is to secure that the
areas where the product vendor has monopoly is
limited to areas where the cost can be predictable.
Specifically, securing that all work following the
implementation project, except maintenance and
support of the standard software, is done by some-
one else, including for example configuration, ap-
plication operation.
To avoid monopoly for complex projects where ex-
ternal expertise on running the projects with the
chosen system, it is advantageous to select a prod-
uct vendor that has a network of partners familiar
with the system, who can act as product integra-
tors. This point is less important than avoiding mo-
nopoly on the daily operation, as large complex
projects following the main replacement typically
are limited in number.
The approach outlined does not remove vendor
lock-in; the view taken here is that such a thing is
not possible. However, most of the serious issues
normally associated with vendor lock-in can be
avoided.

6.8 Use of standard systems
Using a standard system is a comprehensive out-
sourcing of the IT required for executing substan-
tial amounts of the functions that make a telecom-
munication business function. The basic rationale
for using standard systems is that the potential dif-
ferentiation from building systems internally is
dwarfed by the cost, risk and complexity of building
and maintaining such systems for a single com-
pany.

The standard systems typically contain a substan-
tial functionality that covers not only what the busi-
ness currently needs, but also requirements that
are not recognized at the time of installation.
Standard systems, used appropriately, also pro-
motes simplicity and standardization of the trans-
action processes.

7 These considerations refer to the normal situation of network
operators. For organizations where a small team, say less than

Use of custom solutions are viable in selected areas
where the value of flexibility and speed can justify
the higher complexity and cost of custom systems.7
Standard systems continuously come in new ver-
sions that give new functionality in line with the
“best practices” of the industry. And finally, they
provide cost predictability.

There are some downsides and caveats also. The
most important downside is that it can be a very
challenging task to understand the application and
utilize it in the best way. Understanding the appli-
cation is a requirement for being able to operate it
(and failure to secure this capability will over time
remove commercial leverage for the customer).
Further, in a project driven by a product configura-
tor with focus on deliverables, nuances of require-
ments may be missed causing a necessary re-im-
plementation after the project when the system ca-
pabilities and limitations have been fully under-
stood.
Handling the issue of understanding the applica-
tion is discussed further under the discussion of
knowledge transfer, section 7.8. The questions of
what constitutes a standard system and whether
standard systems are always a viable approach are
discussed below.

6.8.1 Definition of a standard system
The issue of what constitutes a standard system is
the focus of this subsection. This is not a straight-
forward question, and one that is dependent upon
the specific system. It includes:
1. The ability to upgrade seamlessly. When a sys-

tem is non-standard, upgrading it to new ver-
sions or even handling new database or secu-
rity standards, can be a major undertaking.

2. Amount of configuration, irrespective of which
form it takes, in order to fulfil the functional
requirements.

3. Implementation of required configuration with
“pure configuration”, i.e., not coding even if
such coding can survive new versions.

Ten-twenty years ago, “standard” was a fairly sim-
ple concept. Configuration was a set of fixed entries
in a table or a file that defined the behaviour of a
system, e.g., currency conversion rates or the inter-
val before starting a dunning flow. Such configura-
tion items still exist, but for some systems scripting
a rule engine or even software code can survive an
upgrade without any intervention; for SaaS appli-
cations such an ability is frequently a requirement.

20 people, can develop and maintain the entire system stack,
custom development can be a viable strategy.

 Page 17 of 27

Since the benefits of standard system, apart from
its functional abilities, is closely linked to the abil-
ity to do seamless upgrades, the concept of a stand-
ard system becomes a legal rather than a technical
item. The following definition is offered here as a
starting point: A “standard system” has the follow-
ing characteristics:

1. The functionality it provides is well docu-
mented.

2. It has regular updates in the form of releases
with release notes, explaining what the up-
grade is and how it is applied.

3. Applying a release takes place using automated
scripts and a reasonable release test with pre-
dictable cost. Not an upgrade project per se.

4. It has firm rules for what is permissible cus-
tomizations, i.e., changes or configurations
that may be applied without losing the ad-
vantage of being able to upgrade using scripts
delivered by the vendor and basic verification
only.

5. The system is constructed in such a manner
that the advantages of the system may be ob-
tained in real-life operations within the limits
of permissible customizations.

With the complexity of modern systems, the con-
cept of “standard system” must be understood in
context of the specific technology of potential sys-
tems. The above is a starting point, but configura-
tion may still become so complex that it can be a
maintenance nightmare.
In order to qualify as a standard system, the vendor
should be willing to put this in a contract, including
taking responsibility (and liability) for upholding
the result. This way the problem of defining what
‘standard’ means in strictly technical terms goes
away and is transferred to a legal requirement.8
Being a standard system is not, however, enough.
The system should support the required business
functionality with only “nominal” configuration.
Now, what “nominal” is and how it is measured is
specific for each system and this needs to be evalu-
ated as part of the RFP.

6.8.2 Suitability of standard systems
The point of view taken here is that for telecom op-
erators, standard systems are suitable for all the
core transactional processes. That does not imply
that their footprint should be universal. There can
certainly be areas where customized solutions can
make sense. One obvious candidate is online, i.e.,
the systems that end-customers interact with

8 Note that a database system is a standard system in this defi-
nition. Which is fine, but fairly uninteresting for the purpose of
implementing business support systems.

directly, where frequent changes and tests of cus-
tomer behaviour requires fast changes and full flex-
ibility. Another area is the still-explorative area of
machine learning and AI.

Again, in the view taken here, there are two key re-
quirements for using custom systems:
1. It is a conscious decision based on real busi-

ness benefits derived from flexibility and con-
trol of the system.

2. It is clearly contained architecturally (so that
for instance the online solution does not start
making its own price calculations inde-
pendently of the main product catalogue).

6.9 Project roles
For a greenfield implementation project, there are
a number of roles involved. Clarity on the roles is
important for the sourcing process, since filling the
roles are part of what the process secures. The fol-
lowing taxonomy is used here.
Product vendor is the supplier of the actual soft-
ware, including the subsequent support and
maintenance services. For SaaS applications, the
product vendor also supplies the subsequent oper-
ations of the system.

Product configurator is the supplier of the configu-
ration of the software. This role includes soliciting
the detailed requirements, starting from the busi-
ness requirements and use cases. 9 The product
configurator should have a product-specific pro-
cess with templates and other tools for defining the
detailed requirements and be able to staff the work
with a team that have experience from several sim-
ilar projects. The product configurator also builds
the main outgoing interfaces, e.g., direct debit,
printing, provisioning, and secures that relevant
APIs are made available, e.g., self-service. Further,
the product configurator executes the test of the
implemented product permitting it to be part of the
final end-to-end acceptance test and participates in
the end-to-end test. Finally, the product configura-
tor has a role in migration, at least for loading data
into the new software.
System integrator is the responsible for managing
the entire implementation project. This can be han-
dled internally, using a specialized firm and/or in-
dividuals and is typically a combination. The sys-
tem integrator manages the end-to-end project, in-
cluding the dependencies to other components, se-
curing all is ready for end-to-end acceptance,
building an end-to-end test model, securing that

9 The business requirements and use cases are artifacts devel-
oped through the process outlined in this document, see further
below.

 Page 18 of 27

the parts of migration not delivered by the product
configuration are implemented. Organisational
change management is also part of this role.
In the process suggested here, the best approach is
to have the product vendor and the product config-
urator be the same company. The main reason for
this is that modern software products are so com-
plex in functionality and configuration that only
people with deep and extensive experience in the
specific product can manage the process well.

The system integrator can be the same company as
the product vendor and product configurator.
However, few of the product vendors have this
competence, and even those who have, are reluc-
tant to take on the full role. The execution ability
should in this case be reviewed carefully.
The typical dilemma in selecting vendors for the
roles is that the product vendor is typically very
strong as product configurator but less capable as
system integrator. Classical, general integrators
(e.g., Accenture, TCS, CapGemini) typically are
strong as system integrators but not as qualified as
product configurator (with a few exceptions on sys-
tems where they have large practices). Finally, the
general integrators can find the role of system inte-
grator without the product configurator role a bit
thin to assign senior staff to.

6.10 Invite system integrators?
This section discusses the question of whether a
system integrator should be involved. A wish to
have a system integrator to “deal with the problem”
is not uncommon. This section discusses this point
a bit further through two scenarios.
The first scenario is where the new IT system ex-
clusively or materially is delivered by the product
vendor who also takes the product configurator
role.
In this case, the system integrator role is (option-
ally) to run the process outlined here by helping to
define and document the architecture, write the re-
quirements and use cases, draft contracts, prepar-
ing for execution, etc., essentially extending the
customer staff, supplying the system integrator
role. The system integrator role can continue into
implementation, still representing the customer
side. This part is difficult to manage commercially
and tends to be time and material. It is, however,
less of an issue than the other elements since it has
no role after the project and the proportion of cost
in this role is quite low, typically less than 5% of the
total project cost.
An alternative is to run the sourcing process inter-
nally (or with dedicated advisors) and invite system

integrators to run the overall project management
after the product vendor contract is in place.
Part of the challenge in this scenario is to find a sys-
tem integrator willing to take this comparatively
small role.
The second scenario is where the system inte-
grator has responsibility for the entire solution, ad-
hering to the normal industry use of the “system in-
tegrator” term. Here, the tender would go towards
a system integrator who would partner with a soft-
ware vendor to deliver the solution. In case of mul-
tiple software vendors, e.g., operational CRM and
billing in separate systems, the role of the system
integrator becomes very prominent.
In this case the system integrator will have a com-
mercial interest in moving away from the standard
system since it will increase the work outside and
therefore the revenue of the system integrator.
Most system integrators with substantial imple-
mentation practices have sales incentives that will
emphasize this. Therefore, using a system integra-
tor this way will require strong oversight internally.
A further key disadvantage of having a system inte-
grator in a very prominent role is that, for telecom-
munications, the system integrators rarely have
sufficient insight in the software to deliver it in a
good way. This means that the ability to optimize
overall value creation may be severely compro-
mised. This is contrary to many ERP solutions (e.g.,
SAP, D365) where the delivery model is based on
system integrators who have staff with deep system
insights.
In summary, the preferred model here is to invite
product vendors to the tender, expect them to be
product configurators also and use other externals
for system integrators.

6.11 Identifying vendors
Prior to executing the contracting phase, the list of
vendors to invite must be produced. Several
sources exist for this, with the analysis firms like
Gartner and Forrester being the most prominent.
For the very initial round, it is better to spread the
net rather widely. Through setting requirements on
the process fairly strict, including that only vendors
with complete functional footprint and relevant
references are considered, a level of self-selection
can be achieved.

6.12 Methodology
In defining the methodology, the pitfalls outlined
above should be avoided. In addition to these, the
design principles applied here are:

 Page 19 of 27

1. Optimize overall value creation through focus
on “what” and utilize vendor expertise to define
“how”, jointly defining a good fit to the stand-
ard product.

2. Maintain commercial leverage throughout and
after the implementation.

The real key point here is to optimize value crea-
tion. If one insists on specific solutions and pro-
cesses, it will not necessarily fit into the systems
proposed. The product vendors will know their sys-
tems so well that they can propose the best way of
achieving the business targets – if one lets them
have the freedom to do so. This is one of the places
where the use of system integrators replacing the
software vendor can be challenging.

The suggested approach is outlined below, showing
the process once the gross list of vendors has been
found.

Figure 14: procurement process

The process looks like a classical procurement fun-
nel: Many vendors enter the funnel, and one even-
tually emerges as the selected. It also resembles it
a lot, but it also has important differences; it is de-
signed to develop the solution jointly with the
product vendor through the sourcing process.

In the illustration, the customer actions are at the
top and the vendor responses at the bottom. So, for
instance at the start, the customer publishes the
“process rules” and the vendors “accept rules” (as-
suming, of course, that they actually do accept the
rules).

The funnel is shown as a strict waterfall with one
ring following the previous. When converting the
method to a plan, this is not the reality. Developing
the business requirements, the term sheet (or con-
tract, see section 6.12.3 for a discussion of the con-
tracting approach) and the use cases are time-con-
suming activities and should be started in parallel.
At each ring of the funnel, the vendors can be eval-
uated and sorted. The process is flexible with re-
spect to the number of participants except for the

last phase where the number of vendors should be
down to two.
The steps “business requirements” and “term
sheet” can be exchanged, depending upon the read-
iness of material for the phases. They can also be
combined, but that takes out one option to push
vendors for better terms.

6.12.1 Process rules
The first step is to invite vendors including setting
out a set of process rules. The process rules should
explain how the process works, including:
1. Description of the process, timeline, contacts.
2. Rules governing the communication, e.g., who

it is permitted to speak with, process for ques-
tions.

3. Rules governing the negotiation process, e.g.,
whether ‘second round’ bidding is permitted.

4. Any response during the process shall become
part of the final agreement. This includes, in
particular, that minutes and recording of all
presentations commit the vendors and become
part of the final agreement.

5. Adherence to the principle of partial specifica-
tion (see section 6.3.5). This is truly crucial as
it permits outsourcing, at least in part, of the
“fit for purpose” risk.

6.12.2 Business requirements
The second step is to develop and publish the busi-
ness requirements. The business requirements de-
scribe the business to be supported, including
products, processes, number of customers per seg-
ment, compliance, security, technical environment
into which the solution must fit, etc. This is typi-
cally a document of 50-200 pages, and it is core to
the process as it represents the foundation of what
needs to be delivered. The document, therefore,
typically needs approval by a broad number of
stakeholders. The document should be developed
by a small core team to secure consistency and con-
currently validated with relevant stakeholders. The
vendors respond to the document with a statement
of compliance and a non-binding price indication.
The business requirement development relies
heavily on the principle of partial specification.
While it still makes sense to cover the main cus-
tomer facing processes, configuration items, and
products, the business requirements can be kept at
the indicated extent due to the principle of partial
specification. In its absence, the business require-
ments would need to be a lot more extensive.
The greenfield approach to some extent builds a
“new company” on the side of the old one and
moves the customers to that. This, of course, is an
exaggeration since the brand, primary

Vendor-1
Final contract

Customer:
“What”

Vendor
“How”

Invited
Vendor-1
Vendor-2
Vendor-3
Vendor-4
…
Vendor-n

Process rules

Accept rules

Contract response
Updated pricing

Business requirements

Requirements response
Indicative pricing

Screened
Vendor-1
Vendor-2
Vendor-3
Vendor-4
…
Vendor-n

Presentation
Vendor-1
Vendor-2
Vendor-3
Vendor-4
Vendor-5

Contract
Feedback

Use cases

Dialogue
Vendor-1
Vendor-2
Vendor-3

Response
Updated pricing

Proof of concept
Vendor-1
Vendor-2

Last push/H2H

Response
Updated pricing

Contract (and solution) developed gradually through responses & feedback

Compensate for gaps (missing items from main vendor)

Dependency planning

 Page 20 of 27

infrastructure and all processes not involving cus-
tomer facing transactions are unchanged. None-
theless, it does typically represent a very significant
renewal of the business.

Writing the business requirements assumes that a
view of future business exists or can be developed
in the process. As such, a simplification is to some
extent a pre-requisite for starting work on the busi-
ness requirements.
This does not mean that every detail of the simpli-
fication is developed prior to the implementation
phase. Part of the process outlined is to develop the
more detailed requirements jointly with the ven-
dor. This means that one needs to know where the
business is going – the “what” part in Figure 14.
Segments, brands, products, volumes, territories,
governance, overall application architecture –
these are things that need to be understood when
drafting the business requirements. But other parts
of the simplification are provided through the pro-
cess of joint specification in adherence to a stand-
ard system.
When defining new or updated processes, under-
standing the situation from the customer perspec-
tive, often termed the “customer journey” is cru-
cial. This implies, for instance, keeping the cus-
tomer perspective and testing against real custom-
ers and incorporating their feedback. Also im-
portant is to maintain a process close to reality; not
infrequently, customer journey visions are not via-
ble in practical operations. The customer journey
definition should be developed hand in hand with
the process definitions – they really are two sides
of the same coin. Customer journey perspective
helps keeping customer experience in focus. Pro-
cess definitions help keeping practical operation as
the necessary basis. This relationship is particu-
larly important when employing consultants that
only focuses on one part – in itself that may be fine
as not all have both competences, but the develop-
ment should still be closely co-ordinated.

6.12.2.1 Flexibility requirements
As most transformation projects are born from an
extended period of irritation over inability to
launch market initiatives at a fast pace due to com-
plexity of legacy processes and IT, a typical high-
priority item in the requirement list is flexibility.
Flexibility obviously is important, but it is im-
portant to be specific as to how this is understood
and interpreted. Requiring vague, broad, general
flexibility, e.g., “ability to support future business
models, marketplaces and partnering” will always
yield a “compliant” answer from all vendors and be
of little practical value.

6.12.3 Contracting basis
The third step is contracting basis. There are a cou-
ple of options for this.
Obviously, one can merely accept the vendor’s
standard contract and negotiate from there in the
final step. That, generally, is commercially chal-
lenging.
To avoid this, two different approaches can be ap-
plied: writing and submitting a full contract for the
vendors to consider or requesting adherence to key
demands listed in a term sheet.

Writing and submitting a full contract is the most
thorough approach and secures that all pertinent
aspects are covered before final down-selection.
The main disadvantage is the effort required in
writing the contract and negotiating several differ-
ent mark-ups. The approach assumes a high-qual-
ity contract being submitted – otherwise the con-
tracting team will be quality assuring in parallel
with multiple vendors, an almost impossible task.

A lighter approach is to submit a term sheet that
covers the items that are normally contended in
software contract and ask for compliance. This will
then be incorporated in the contractual material.
Before submitting the term sheet, the vendor
should also be asked to provide the standard con-
tract so additional terms may be added. The ad-
vantage of the process is that it requires signifi-
cantly fewer resources. The key disadvantage is
that it leaves certain negotiations until the final
contracting, where the commercial leverage is
weakened.
Jointly with the contracting input, the vendors are
given feedback on their response, both the content
and the price. The vendors then respond to the con-
tracting basis and reverts with updated pricing as
well as updates to the response to the business re-
quirements, if applicable.

6.12.4 Use cases
The fourth step is issuance of use cases the vendors
must support. The purpose is to ensure a struc-
tured walkthrough of key functionality and capabil-
ities that may be documented as a contractual com-
mitment.
Any reasonable functional description technique
may be applied – use cases is one option that has
the advantage of being fairly easy and efficient to
apply.

The functional descriptions need not be fully cov-
ering all requirements, but should as a minimum
cover the core functionality. The vendors shall re-
spond with compliance to the use cases, preferably
including a description of how the use cases are
supported, and potentially submit updated pricing.

 Page 21 of 27

Also, the use cases form the basis for the proof of
concept.

6.12.5 Proof of concept
Before entering the fifth step, the number of ven-
dors should be low, preferably down to two. There
are two main reasons for this. Firstly, it is quite a
bit of effort for the sourcing team to go through a
proof of concept. Secondly, the vendors will need to
put significant effort in a proof of concept, and their
awareness that their chances are good will improve
the quality.
In this step, the vendors demonstrate how their so-
lution will support the business requirements and
the use cases. This should be done through a “proof
of concept workshop” of 4-8 days where the rele-
vant use cases structure the walkthrough and the
compliance is recorded, electronically as well as in
minutes.

For this activity, it can be considered to permit a
limited payment to the product vendors entering
into the proof of concept. This goes in particular for
smaller contracts where the vendor sales manage-
ment may be reluctant to spend substantial time of
configuration without a contract. This approach is
akin to the paid “architects’ competition” employed
in some tenders for construction.

6.12.6 Contracting
Finally, a vendor is selected, and the concluding ne-
gotiations can take place. Potentially, the project
can start signature based on a letter of intent or
similar. This, of course, carries the risk that the
project is abandoned, but with the proper con-
struct, it serves to put some of the time pressure on
the vendor. If the LOI approach is to be applied, it
should be included in the process rules.

6.12.7 Organisation
For this phase the project organisation should be
very simple, preferably only roles rather than
streams. A very common approach is to have dis-
connected streams, e.g., 'technical stream”, “func-
tional stream”, “sourcing stream”, “legal stream”
etc. This approach carries the risk of getting a dis-
connected process; for instance, the business re-
quirements are not independent from the contract
and getting functionality into the standard product
may be a more important task for the sourcing staff
than the final price reduction.
The approach recommended here is to have a
small, closely-knit team with roles but not inde-
pendent streams. And a project management team
(or individual if such a person can be found) who

10 See section 6.9 for a discussion of these vendor roles.

has the ability of taking a holistic view of the docu-
ments produced.
Ideally, the core team should be fewer than 10. Ad-
ditional people for review should be added for qual-
ity assurance and securing buy-in for the process.
These additional people should be focused on
providing review, inputs on questions, and provid-
ing business guidance, but not producing material.

6.12.8 Staffing
Staffing the business side of a transformation pro-
ject is almost invariably a challenge. For an ap-
proach as outlined above, the issue becomes para-
mount.
As discussed above, the approach outlined in this
document attempts to define a “new company”.
This entails a very large number of micro-decisions
on what are acceptable compromises to support the
chosen segments. These decisions will have signif-
icant impact on the enterprise value following the
transformation as it may shift market share and
revenues beyond normal evolutionary develop-
ment of business.
Therefore, the requirements cannot be specified
and approved in “steering group approval” style, as
is the normal mode of involving senior decision
makers. It requires that these senior decision mak-
ers are directly involved in these micro-decisions;
not CxO level, but experienced people 1-2 layers be-
low.
Freeing up such people from daily operation is gen-
erally impossible. They are invariably indispensa-
ble to delivering the results in the next few quar-
ters.
One potential solution to this is to strengthen these
line organisations several months before the pro-
ject is to start, so that the senior people in effect
have been backfilled and can be freed up for the
project.

The focus in this section has been on the business
staff; that does not mean that IT staff is irrelevant
or unimportant, but typically IT staff is organized
to work in projects, making it easier to allocate
them. Furthermore, the IT staff is substantially
augmented by the vendors, in particular the prod-
uct configurator and system integrator.10

6.12.9 Other preparations
There may be other solution components than the
main software system. In addition, there are typi-
cally dependencies on internal and external sys-
tems; for instance, a test environment for the direct

 Page 22 of 27

debit or number porting systems may not be read-
ily available.
In Figure 14: procurement process, these activites
are illustrated in the arrows below the main funnel
termed “compensate for gaps (missing items from
main vendor)” and “dependency planning”.
In parallel with the sourcing process (preferably in-
tegrated in the same team), these dependencies
and gaps must be understood and detailed. This
can entail running smaller scale sourcing pro-
cesses, securing priority in internal resource allo-
cations, reaching agreement with existing, external
suppliers for legacy systems that are to be retained,
securing development of dual operations and other
similar activities.

It is not uncommon to run a full process of sourcing
for product vendor, product configurator, and sys-
tem integrator, and complete the development and
signing of a contract - only to find that the internal
readiness is not up to supporting the process for
which a contract has been signed. The product ven-
dors, recognizing this, can leverage such situations
to avoid living up to obligations, getting waivers for
penalties, or similar actions.

7 Greenfield phase 2: implementa-
tion

The implementation phase can obviously be exe-
cuted in a number of different ways with differing
approaches for the pertinent activities, e.g., devel-
opment, testing, project management. The ap-
proach described here continues from the results
coming out of phase 1 and has been tried in practice
in various flavours.
The section starts with a methodology discussion
followed by a review of a sample project organisa-
tion. Not that the organisation structure is really
that important, but jointly with the methodology, it
serves as a framework for discussing the various
roles and responsibilities.
Following this, a number of key implementation
considerations are discussed:
1. People and change.
2. Dependency management.
3. Test.
4. Migration.
5. Knowledge transfer.

This list is not exhaustive – obviously there is a lot
more to running an implementation project of the
scale discussed in this comparatively brief docu-
ment than can be covered here.

7.1 Methodology and plan
As will be recalled from the above, the approach ad-
dresses a situation where a vendor – either a prod-
uct configurator or a system integrator – delivers
very large proportions of the project. Other deliv-
erables, e.g., interfaces, adaptations to existing sys-
tems or new online presence, are delivered in the
project or by other vendors, internal or external. All
this needs to come together in order to secure the
delivery. In addition, in order to keep cost control,
the functional requirements need detailing prior to
execution. Therefore, the overall program ap-
proach resembles an old-fashioned waterfall.

Figure 15: generic implementation plan

The shaping phase are in Q1 and Q2 and the imple-
mentation phase from Q3 onwards with testing
happening in Q6 and Q7 and migration following
that.

Note that the waterfall approach is identified via
the key milestones indicated: contracting, start of
test and start of migration. Here, all the compo-
nents need co-ordination in time and content. How
each delivery is managed, via agile or waterfall, is
not material to the process.

A normal reaction is that this is a long time. Two
years, of course, is that. However, the timeline out-
lined is an optimal one requiring extremely effi-
cient execution. Three years is a more common ex-
ecution time. It is an almost invariable experience
that pushing the timeline too hard will result in de-
lays that in the end makes the project take even
longer.

The activities 1-3 are described in the contracting
phase, section 6 above.
Activities 9 (project deliverables) and 10 (agree de-
livery) identify and secure delivery of such items
that the main process (activities 1-8) are dependent
upon, e.g., preparation of dual operation, data
cleansing. The dependencies can be managed by
the project or can be delivered by the organisation

Q1 Q7Q2 Q3 Q4 Q5 Q6 Q8

1.
Require-

ments

2. Down select
to 2 suppliers

3. POC,
contract

6. Inte-
gration

7.
Acceptance 8. Migration4. Detailing 5. Implementation and FAT

9. Project
deliverables.

10.
Agree

delivery

11.
Detailing 12. Implementation and FAT

13. Test preparation

15. People change management.
Prepare operating model including guides, training etc.

16. Implement operating model.
Including training.

14. Migration preparation

 Page 23 of 27

or an external (typically not the vendors for the
main system). Irrespective of who and how, agree-
ment of delivery must be in place in order to exe-
cute at the time indicated.

Activities 4 (detailing) and 5 (implementation and
FAT) will depend on the approach from the prod-
uct configurator. The detailing will normally be re-
quired as the specification developed in the con-
tracting phase will not be complete. At the end of
activity 5 (implementation and FAT), the product
configurator should deliver a solution that has been
through internal testing (the FAT, i.e., factory ac-
ceptance test).

Activities 11 (detailing) and 12 (implementation
and FAT) correspond to 4 and 5 and focus on im-
plementation of the dependencies, typically related
to temporary interfaces or interfaces to existing
systems that remain after the project. Here the ap-
proach can vary quite a bit, and for internal deliv-
erables more flexibility on end-result is possible.
For instance, the online presence can be more or
less sophisticated in an initial release and that can
be managed flexibly internally. Similar to the deliv-
eries from the vendor out of activity 4 and 5, the
deliveries must be tested and functioning inter-
nally.
Activity 13 (test preparation) is preparation of test
which is further described in section 7.4. It pre-
pares test of integration, migration, security, disas-
ter recovery, acceptance, manual processes, opera-
tions etc. Note that the start of the activity is early
– preparing a proper test model is extensive work
requiring on-going interaction with the detailing
and implementation.
Activity 14 (migration preparation) is preparation
of migration. Like test, it starts early as there is sub-
stantial work in designing dual operations, identi-
fying data sources and initiating data cleansing.
Migration is further discussed in section 7.7.

Activity 15 (people change management) and 16
(implement operating model) are the preparation
and implementation of the required change. See
further discussion in section 7.3.
Activity 6 (integration) is the integration where the
various elements meet “officially”. Clearly, it is ad-
vantageous if integration between the various sys-
tems has taken place prior to this activity in order
to enable on-going learning, but this is a detailed
planning issue not covered further here. The inte-
gration testing is a key milestone, the latest time at
which all systems meet and a precondition for
meaningfully entering acceptance.
Activity 7 (acceptance) is the execution of ac-
ceptance procedures where the prepared test
scripts are executed in order to verify readiness for

go-live. For vendors, in particular the vendors for
the main system, it also has a contractual dimen-
sion.
Activity 8 (migration) is the physical migration. See
further in section 7.7.

7.2 Project organisation
In the contracting phase described in section 6, the
project organisation is small and with little or no
formal structure, as further discussed in section
6.12.7. The process in the first phase is explorative
and knowledge sharing is key.
Moving to implementation, more structure is re-
quired. In the implementation phase up until start
of integration, a typical organisation structure is as
illustrated below in Figure 16: generic implemen-
tation organisation. The discussion in this section
assumes the use of a product configurator, whereas
a system integrator can be used as augmentation of
internal staff.

Figure 16: generic implementation organisation

The structure is typically adjusted in the test phase
to accommodate the focus on error correction. In
case of multiple releases, corresponding adjust-
ments are required. The white boxes are dependen-
cies that are not managed by the project. The grey
boxes are project roles that can be internal or
staffed from a system integrator or other means of
staff augmentation.
The project management is a combined content
and progress role, with primary responsibility of
securing overall business goals.

The functional architects are key people designing
the future business. They are responsible for for-
mulating the business requirements and the fur-
ther detailing. They should be mandated to define
the future business, i.e., to take all the detailed de-
cisions that are required in order to design a new
IT system, even when it is based on a standard sys-
tem. Through a reference group or other struc-
tures, suitable involvement and approvals in the
line organisation can take place.

Project management

Functional architects Technical architects

PMO People and change

Supplier
management

Supplier

Directly managed
dependencies

Delivery staff

Other dependencies

Delivery staff

Test preparation

Test staff

Migration
preparation

Migration staff

Steering group

 Page 24 of 27

The functional architect is often the most difficult
role to fill since it requires knowledge of the current
business, a vision of the future and sufficient sen-
iority to balance the vision with the realities of pro-
ject execution. Such individuals are invariably al-
ready in key roles; if it does not hurt severely when
taking them out of the line organisation, they are
likely to be the wrong people.
The technical architects are responsible for secur-
ing alignment with technical standards, interfaces,
overall architecture, issue resolution etc. They
write the technical parts of the business require-
ments and detail the interfaces, data mastering and
other similar items. If preparation of operations is
included, infrastructure architects design and se-
cure this.
Typically, a fairly large number of complex issues
needs to be resolved, requiring both function, busi-
ness understanding, insight in current systems and
ability to analyse and facilitate agreement on tech-
nical solutions. While typically simpler to staff than
functional architects, these are also highly special-
ized roles.
The PMO is the administrative part of project man-
agement, handling tasks like resource allocation,
financial follow-up, physical accommodation. This
is more generic role.

The people and change are responsible for driving
the change within the line organisation. Again, this
is fairly generic, but preferably the change compe-
tence should be combined with people understand-
ing the organisation well.
Vendor management secures link to the product
vendor and product configurator and their deliver-
ables, managing the contract, resolving issues, ar-
guing about cost and potential change requests etc.

Directly managed dependencies is a subproject
that handles the technical deliverables that are di-
rectly from the project, i.e., handled with staff allo-
cated to the project.
Other dependencies task is a subproject that han-
dles deliverables from other parts of the organisa-
tion, other external vendors and any such depend-
encies that can reasonably be pooled together.
The three last roles, the vendor management, the
directly managed dependencies and other depend-
encies, require project management and business
understanding, interacting with the functional and
technical architects. They can be structured in dif-
ferent ways. Here it is illustrated based on relation-
ship with the programs, but it could also be a func-
tional delineation, e.g., one part responsible for the
channel part of the systems or value stream based.

Test preparation is the team that prepares the test
model. In some cases, the software vendor does
this, and then some of the staff would not be di-
rectly managed.

Migration preparation is the team that prepares for
data migration, data cleansing and other similar
activities. Securing dual operation can also be
placed here.
Most of the management roles described above are
part of the system integrator role. These can be
staffed internally, from a specialized firm, through
sourcing of individuals or a combination of these
approaches.

7.3 People and change
In section 2 the main organisational change chal-
lenge of mobilizing the entire organisation towards
the transformation goals was discussed.
At a more pedestrian level, people and change is
concerned with preparing the organisation for the
changes resulting from introducing the new tools.
The new tools may imply changing roles, e.g.,
higher first-time resolution will shift staff from
back-office to front-office. And they will certainly
require updates to guides to front-end staff, train-
ing, information meetings and a number of similar
tasks.

Securing that these activities all take place is the
role of people and change. The methods and ap-
proach for such activities are a comprehensive
topic in its own right and not covered in this docu-
ment.
The point of this section is to highlight the im-
portance of agreeing distribution of responsibili-
ties. The experience from the projects that form the
basis for this document is that the project itself
should be focused on orchestrating the change. The
execution of the change activities should take place
in the line organisation. This includes for instance:

1. Preparing and implementing change to the or-
ganisation structure, if applicable.

2. Developing process and instruction material
for use of the new systems.

3. Preparing and executing training.
4. Updating KPIs, department and individual tar-

gets etc.
The main reason is that unless the line organisation
takes responsibilities for these activities, the pro-
ject becomes something that is done to them rather
than with them, a perception which tends to create
opposition and friction

 Page 25 of 27

7.4 Dependency management
From the system integrator perspective, the key fo-
cus is to manage dependencies towards the points
in time where all the various items come together.
The individual project streams must manage their
dependencies directly, such dependencies to be
identified and monitored on an on-going basis.
A key dependency is that all sub-projects must be
ready for integration testing, i.e., the place where
the components all come together for initial end-
to-end testing. Managing this well typically re-
quires some progress tracking.

7.5 Contingency management
As noted initially, even with the best preparation by
experienced people, transformation projects tend
to have significant uncertainties. For this reason, a
contingency is often allocated to handle the unex-
pected.
The contingency can be explicit and allocated or
implicit as a risk. Having it explicit and allocated in
the budget ensures that it is not cut out as a saving
without substantial consideration. The contin-
gency should be seen as part of the project budget,
since it reflects the professional experience on what
must be expected in a well-executed project. It is
not, as the perception sometimes is, a result of
sloppy planning.
Further, it can be managed at different levels. Ei-
ther at the project level or at steering group level.
The best approach is for the project to administrate
it, since that is the practical execution, but for the
steering group to manage (approve) its use, since
this promotes discipline.
The most important point is to make the contin-
gency explicit and distinguishable from the core
project budget in order that it is not merely used
without specific decision to do so.

7.6 Test
Test happens at many levels in major system re-
placement projects. Each of the deliverables that
jointly constitute the solution have internal tests,
interface tests, process tests etc.
The topic of this section is the process test that ver-
ifies that all the functionality is in place. A very light
version of it constitutes the integration test that
precedes the process test. From the V-model per-
spective, these are the top 1-2 layers of testing; the
deeper layers are handled in the individual sub-
streams.
Once the process test has been executed success-
fully, the solution is ready to go live and be

accepted. Securing that this takes place with ac-
ceptable risk is the – very important – role of the
end-to-end process test.
In addition, the end-to-end test is also linked to
formal acceptance and typically also payment mile-
stones.
Testing this way resembles classical system test in
a waterfall project. However, the effort compared
to “classical” projects is reduced from two factors.
Firstly, large parts of the solution are based on
standard systems, so a lot of basic errors will be
eliminated even before start of the project. Sec-
ondly, the migration approach is assumed to be
gradual, which means that the tolerance for errors
is substantially higher than in big bang migrations.
This risk balance is an important determinator for
the complexity and duration of the test.
In order to execute the test, a test model must be in
place. A test model consists of a number of test
cases, typically 1,000 – 2,000, that are joined into
scripts for execution. Part of the test model is kept
long-term for regression test. Once the test model
and the system are stabilized, it may be considered
automating the test execution.

The test model typically consists of a large number
of functional test cases and fewer, but crucial, secu-
rity and compliance test cases, including business
continuity, penetration test and the like. These are
registered in a collaboration tool that supports the
fixing, deployment and retesting process, including
registration of execution, errors, fixes, re-testing.
In order to execute the test, there needs to be com-
prehensive environments spanning all relevant
systems. A number of such environments are typi-
cally required in order to execute integration test,
acceptance test, technical tests, training etc. De-
pending upon the maturity and sourcing model of
IT, this can be anywhere from straightforward to
extremely challenging.

Furthermore, data is required. In these days of
GDPR, data can either be constructed or anony-
mized. Both options can entail significant effort.

Since the product vendor in many cases builds sub-
stantial parts of the test model, it is tempting to use
this for acceptance test. That is also quite viable,
but firstly the vendor normally only covers part of
the scope and secondly the acceptance test also has
a commercial implication in signifying the comple-
tion of the vendor’s commitments in the project. As
long as these issues are addressed, it can save sub-
stantial amount of work.
Various levels of test automation are beneficial and
should be mandatory for the lower-level tests like
unit test as well as for areas that lend themselves to

 Page 26 of 27

batch or API testing. Setting up test for GUI can be
quite time consuming and must be considered
against the benefits (seeing that only a fairly small
proportion is likely to be used after the transfor-
mation project has concluded).
Equally important as automating test of code is the
management, again preferably automated, of test
environments. It is a common and very time-con-
suming challenge that the migration between envi-
ronments, code deployment, data synchronization,
connectivity between the intended environments
etc., is of insufficient quality. This can, for example,
cause problems to appear that are not due to the
application. Differences between test environ-
ments and production environments can cause ap-
plications that passed acceptance in test to fail in
production.

7.7 Migration
Migration of customers to a new system can take
place gradually over a longer period, or over just a
couple of days, the latter termed ‘big bang’. The ap-
proach outlined in this document assumes gradual
migration. The key reason is the risk associated
with big bang migrations, where faults can cause
customer operation to halt, ultimately threatening
existence of the company. In order to avoid such
risks, a big bang approach requires a more exten-
sive test than what is indicated in the plans pre-
sented above.

The gradual migration assumes dual operations,
i.e., the parallel execution of the legacy and the new
system for a period of months. During this time-
line, a number of areas need to interface, including
for example online, call centre PBX, payment inter-
faces, CDRs, number porting. In addition, the re-
sources like phone numbers, SIM cards, CPEs, and
IP addresses need to be managed jointly. Some re-
sources can be pre-allocated to either stack, but
others like physical addresses and access ports
must be shared.
The dual operation needs to be prepared and pref-
erably put into production well before the go-live of
the solution (to avoid confusing where the errors
are coming from).

The migration can be driven by the customers, in
which case dual operation is a year-long affair, or
through moving customers actively from one sys-
tem to the other. In the latter case, the tempo needs
to be adjustable in order to mitigate the risk; this
means that changes made to the customer cannot
imply that the customer migration date becomes
fixed (like it might be if the customer should have
notice of the change).

Technical migration can be product based or cus-
tomer based. In the product-based approach, all
customers with product X are moved to product Y.
This is analytically simple and often used. In case
of many high-ARPU customers moved to lower-
ARPU products it can also be expensive. Another
option is to make it customer-based, defining the
new product based on customer profile and usage.
This is more complex but can in some cases miti-
gate the ARPU decline, since the customers can be
migrated to “value loaded” products, i.e., getting a
product with more consumption or features rather
than a decrease in price. The customer-based mi-
gration may require customer notification, which
then shifts the risk balance of the migration.

Migration is nearly always challenging. Data is typ-
ically inconsistent and/or incorrect, data sources
are hard to identify, and dual operation adds to
complexity. The preparation should be started
early with actual data and the migrated data should
be used for testing as soon as possible. As the say-
ing goes, if migration is not your biggest problem
you have not understood it yet.

7.8 Knowledge transfer
As was noted in section 5, getting the right target
operating model is important to secure continued
commercial leverage. In order to enable a target
operating model where the product vendor does
not continue to deliver services except for support
and maintenance, other staff, internal or external,
needs competence.
The competence includes application operation,
application maintenance and application develop-
ment. The latter two in particular include ability to
configure the system as well as interfaces.

Due to the complexity of the systems contemplated
here, such competence cannot be achieved fully
through training. People need to work with the sys-
tems to understand their potential and shortfalls,
selecting and advising on the best way to use the
system. This is best accomplished through having
people participating in the development jointly
with the vendor. If this is not possible, it must be
expected that the vendor needs to participate in all
activities for a while following go-live. Firstly, this
should be budgeted and secondly, participation of
internal staff in the activities following go-live
should be enforced.
Knowledge transfer can be elusive and tend to suf-
fer from focus on more urgent activities. One po-
tential remedy is to make it subject to formal ac-
ceptance.

 Page 27 of 27

8 Summary
The greenfield approach outlined here provides a
process for implementing a new core system. The
process has been tried in practice, adapted for in-
dividual projects to different flavours.
The first phase, contracting, is the most important
since it secures the simplification and adherence to
standard systems. In particular, for the simplifica-
tion, strict adherence to standard systems is im-
portant. And, equally important, it tees off for the
implementation in a manner where expectations
are aligned.
The second phase is more regular in the sense that
it resembles other approaches to system imple-
mentation.
While not applicable to all contexts and still requir-
ing substantial experience to execute, it contains a
framework that make such projects relatively pre-
dictable.
As stated initially, it is a key purpose of the process
to ensure long-term cost predictability. This is se-
cured through the following measures:
1. Strict adherence to standard systems.
2. Contracting for fixed-cost implementation.
3. Securing ongoing commercial leverage in all

areas except support and maintenance.
4. Contracting for cost predictability in the sup-

port and maintenance.
5. Securing termination notices that do not un-

dermine cost predictability for support and
maintenance.

This, of course, provides a basis for cost predicta-
bility. If the subsequent governance permit devia-
tion from the standard system, it will be a question
of time before one return to the “legacy” problem.
While the people and change part of the project can
focus on this, it remains a management task and
challenge to keep adhering to simplicity and stand-
ard systems.

9 Contact
The authors of this document are Lars R. Ander-
sen and Simon Skals. Lars and Simon work as ad-
visors, primarily within networks and IT.

Lars has a background from consulting, primarily
from Accenture, and CTO/CIO of Telenor in Den-
mark.

Simon has a background from the telecom indus-
try, having worked in companies such as Telenor
and TDC, and was co-founder and CITO of the
Danish ISP Hiper.
We can be contacted via: lars@ra-advisory.dk.
This and other white papers are available free on
www.ra-advisory.dk.
The document is written from experience with a
number of BSS replacement projects and gradually
refined to reflect the learnings obtained. In most of
these projects, the methods have been applied in
part and in some they have been used successfully
in full. Now clearly, there is a lot more to BSS re-
placement than what can be contained in this doc-
ument. If you wish further perspectives please feel
free to reach out.
This document may be freely distributed as long as
its source is referenced.

mailto:lars@ra-advisory.dk
http://www.ra-advisory.dk/

